001001
00 0
110 O 1010100 1

010‘11001000 O
K@@in O’ LW
]

0]

0,100

09
11%071

Fast insights to optimized
vectorization and memory

Software

using cache-aware roofline

analysi

1

010
1

110 1(9 ”O”*O%EJ
O—h

0 45

£20
100 ‘”'”10
G oo
O1L%())u10() 001001 UO;I"OOO‘IO
09 1%3 o & 269190
1 1 1 1 0111010
1 01 00000 W00']
o0, e 008 101
u oot 80 ’I
o & 19170 ¢ 10
011o1oooo11oo1gWO 10(810 (1)80 Wg‘l10100010100011101011001
%0 o 0 o110 9P 204 00100
50 O 0130701111005 o 08 o 1o
0 00 T Pt Oa"’ o019 1
11 10
1*6] O%?ow 100m Tl 1oj| OO
e 0000
110m166811001011 ‘Io L(B 0100‘I 01 g ; 1
1011101 01 10 1
1‘1811100001%1&0”0‘01 110 10110%(31131%330 1081008?3
(0]
o ooo1 T

09
-| il 0‘1“\9\(81101%0 0,
0 OO W(A 1
010 001

Owoo

2
_\OOSO
o
28
55

O =0
(o]e]e)
-0

Fast insights to optimized vectorization and
memory using cache-aware roofline analysis

= The Roofline model

* Intel® Advisor Roofline analysis

* Intel® Advisor Demo

* Intel® Advisor Case Study

* |ntel® Advisor “What's New” and 2018 beta
= Summary

The Roofline model

Acknowledgments/References

Roofline model proposed by Williams, Waterman, Patterson:

“Cache-aware Roofline model: Upgrading the loft” (llic, Pratas, Sousa, INESC-ID/IST, Thec Uni of
Lisbon)

At Intel:
Roman Belenov, Zakhar Matveev, Julia Fedorova
SSG product teams, Hugh Caffey,
in collaboration with Philippe Thierry

Roofline Model — A visually intuitive

performance model

Combines
- memory utilization/demand
- CPU utilization

Into the same performance analysis

and modeling space

Arithmetic Intensity (Al) = # FLOPs / # BYTE:

0.1-1.0 flops per byte

Typically < 2 flops per byte
A

0(10) flops per byte
A

SpMv
BLAS1,2

Stencils (PDEs)
Lattice Boltzmann

r

FFTs,
Spectral Methods

Methods Rt

N7

onglty

Particle
Methods
Dense
Linear Algebra
(BLAS3)

\

Y
0(1)

Y
O(log(N))

J \
Y

O(N)

Roofline model: am 1 bound by VPUICPU or by Memory?

Attainable GFlops/sec

128
64
32
) peak floating-point performance
16 oo
[|
(Nl'\d‘h
nx\(“a“ |
8 e
w7 o |
4 2 | [»] 2 &
g _ A | »] 2 TG
272 £
, £l £2
A e
L £5 $3
=E |
g g 5 E
" o =\ 8' §|
1/4 12 1 2 4 16

Operational Intensity (Flops/Byte)

What makes loops
A, B, C different?

GFlop/s

A

Peak FP

Cache-Aware vs. Classic Rooflin| g

Al = # FLOP / # BYTE g B e
Al_DRAM =
128 =16 MAD (Peak Performance £
&4 ADD/MUL
FLOP/ # BYTES (CPU & Cache <> DRAM) g ;" f* ‘":': gy
g’; x)\9’01....00.0.000.
- “DRAM traffic” (or MCDRAM-traffic-based) 8 4 S
» j
1
- Variable for the same code/platform (varies with dataset size/trip count) £o o APPLT
0.25¢" 01+ m APP-D
- Can be measured relative to different memory hierarchy levels — cache level, ROOTHIE OE eevatonalnensiy [FopSDRAM Byg]
HBM, DRAM
AI—CARIVI = I=16 MAD (Peak Performance Fy)
. ADD/MUL
FLOP / # BYTES (CPU <> Memory Sub-system) ﬁ;
o
o)
- “Algorithmic”, “Cumulative (L1+L2+LLC+DRAM)” traffic-based :
E
5 Mo A~
- Invariant for the given code / platform combination Enui-: 0 d 3 Ay (Cace-aware) __
s ‘ | | B _APP-D (Original/Cache-aware)
0.0078125 0.0625 0.5 .4 3 32 256 2048 16384
Overational Intensity [FlopsBytel |

- Typically Al_CARM < Al_DRAM

Intel® Advisor roofline
EWAIE

Find Effective Optimization Strategies

Intel Advisor: Cache-aware roofline analysis

» Roofline Performance Insights INTEL ADVISOR

- Highlights poor performing Performance (GFLOPS) k(@ « + X © | [Use Single-Threaded Roofs @ =
loo pPS 4216 } S PR ok G B A
= Shows D erformance B Tl :JE_‘vie_C}@:’ti*s:Jgiﬁgk_£§‘rw;9?e:-}>}i§5‘d95*fq?_2_;?-EJ_GE_LQES__
“head room” for eaCh Ioop - . o ARG £b: :’::4’._-.v.’_-_S_‘C_’a_;fr_fi«L;@_P_e_a_k_gs_r;glge_-t_h_r@@c_lggé_,a_g.z*‘_r_a'ELgié_é_._-_-
= Which can be improved
= Which are worth improving :)

= Shows likely causes of o
bottlenecks 07

= Suggests next optimization
steps

0.04
Arithmetic Intensity (FLOP/Byte)

Find Effective Optimization Strategies

Intel Advisor: Cache-aware roofline analysis

— Roofs
Roofs Show Platform Limits GFLOPs/S o TV
& ? [
= Memory, cache & compute 2 ‘@oo‘* ol
limits e Ve
Dots Are Loops

= Bigger, red dots take more time
so optimization has a bigger

CPU Cap: Vector Add

im paCt OCPU Cap: Scalar Add
= Dots farther from a roof have %
more room for improvement °c .
. . Arithmetic Intensity (FLOPs/Byte)
= Higher Dot = Higher GFLOPs/ . e T
sec Which loops should we optimize?

Y = Aand G are the best candidates
= Optimization moves dots up = B has room to improve, but will have less impact
= Algorithmic changes move dots = E, C, D, and H are poor candidates

horizontally

Roofline Automation in Intel Advisor 2017
update 2 and 2018 beta

Performance (GFlops/sec) k @] « X =
Roof Name Visible Selected
DRAM Bandwidth
Each Roof (slope) 1 .
Gives peak CPU/Memory throughput L2 Bandwidth O
of your PLATFORM (benchmarked) DETEnE g
Scalar Add Peak O
""""""" SP Vector Add Peak
DP Vector Add Peak O O
SP Vector FMA Peak
Each Dot - DP Vector FMA Peak O O
represents loop or function in YOUR
APPLICATION (proﬁled) Loop Weight Representation Cancel Default
— V] Size [v] Color Visible
+ ® 4 green
= Threshold Value | 0.2 %
+ O s yellow
6.3921e-3 | Threshold Value [2 %
+ . 8 red
00015
Self Time: 10.918s Total Time: 10.918s r
e | e [y e wion: | & compiesl * INteractive mapping to source and performance profile

* Synergy between Vector Advisor and Roofline: FMA example

Line Source
4399 for (i__=1; i_ <=1i_2; ++i_)
4400 aali_ + i * aa_diml] +=bb[i__ + i__ * bb_diml] * cc[i__ + k' custom|zab|e Chart

4401 * cc diml]; T

Intel® Advisor Roofline: under the hood

Roofline application profile:
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds|
Axis X: Al = #FLOP / #Bytes

User-mode sampling

Performance (GFLOPS)

1000) S Veous VA Pask W Microbenchmarks
Root access not needed " __—"DP VeGior FMA Peak. 2 FLOP Actual peak for the current
_— SP Vector Add Pest 110.6 GFLOPS configuration

DP Vegtos-#@d Peak: 56.21 GFLOPS

o n/”/”.

Scalar Add Peak: 14.05 GFLOPS

» B

Arithmetic Intensity .
Binary Instrumentation
Counts operands size (not cachelines)

Binary Instrumentation
Does not rely on CPU counters

Getting Roofline data in Intel®Advisor

FLOP/S
= #FLOP/Seconds

Seconds

HFLOP
- Mask Utilization
- #Bytes

Step 1: Survey
Non intrusive. Representative
Output: Seconds (+much more)

Step 2: Trip counts+FLOPS
Precise, instrumentation based
Physically count Num-Instructions
Output: #FLOP, #Bytes

Interpreting Roofline Data

Final Limits

(assuming perfect optimization)

Long-term ROI, optimization strategy

Compute bound

@?f@ A A

»ating point performance, GFLOP/s
9,

~0

Finally memory-bound

Invest more into effective

A

Finally compute-bound

Invest more into effective
CPU/VPU (SIMD)
optimization

Current Limits

(what are my current bottlenecks)

Next step, optimization tactics

cache utilization ensity, FLOP/byte

Pedomance (GFlops/sec)

44180041 |- - 5P Vestor FMA Peak; 4 4180¢+1 GFlops/sec

Check your Advisor
Survey and MAP results

3.0205e-2

T T
00027 0.7636
Seff Time: 0.346s Total Time: 0.346 s Adthmetic Intensity (Flops/byte)

Source TopDown Loop Analytics Loop Assembly & Recommendations & Compiler Diagnostic Details

| Totel Time| % [LoopTime| % | Traits |~
0,054 03465

202 afi_] =aali__ +Jj * aa_diml] - a[i__ - 1]; 0,151s |

What are my memory and compute peaks?

How far away from peak system performance is my application?

Performance (GFlops/sec) =< ik

4.4180e+1 - - -SSP Vector EMA Peak: 4.4180e<1 GFlopsisee _ _ _ _ _ _ _ _ _ _ _ o _________ S S ——

. Can we do any better?

_ _ _Seslar Add Pesk: 2.3042 GFlopsisec _ _ _ _ 7 _ _ _ _ _____________,_:;'_7 ________ &)
P 1 =
L g apB 2 How far are we from roofs?
_ - o Ly o ‘
:. s = ®
S T o
L eeT o @ oTF e e
LS e !
== @ 1
A2 e e
- 1
a.0z0setpgarithmic scale ° :
_ 1
- 1
0.0627 : 0.7636
Self Time: 0.346 s Total Time: 0.346 s 1 Arthmetic Intensity (Flops/byte)
Source Top Down Loop Analytics Loop Assembly & Recommen dations & qumpile Diagnostic Details
1
Line s L A== | Fotet Fimel 5| toop Fimel Al (@RAMtflopLByte)
3200 for (i__ = 2:; i___ <= i__2: ++i__) 0,054s 0,346s
8201 {
B202 afi__] = aafi__ + 3 * aa_diml] - afi__ — 11: 0,151s |

Perform the right optimization for your region

Roofline: characterization regions

@
GFLOPS
1} Scalar ~2.3 Peak GFLOP/sec ..
| O
Golsec i |
/{7(’0‘@1‘55/ .
| O
5 GHseC o e $
el core .
° DRAM P | ® o e e :
@ ° Compute-Bound
o ']
arithmic scale L2/LLC/DRAM/Compute-
bound

- Gray area (need more
Optimize memory data to determine right
(cache blocking, etc) - strategy)

0110110 v
| 1896 0100%%}9119C]htel Confidential 1

Optimize cbmf:).u:ce‘
I (threading,

vectorization, etc)

Intel®Advisor demo

Intel®Advisor case studY

ROOTITC AlNAlySIS 1O
Tune an MRI Image
Reconstruction
Benchmark

The 514.pomrig SPEC ACCEL
Benchmark

= An MRI image reconstruction kernel described in Stone et al. (2008).
MRI image reconstruction is a conversion from sampled radio
responses to magnetic field gradients. The sample coordinates are in
the space of magnetic field gradients, or K-space.

= The algorithm examines a large set of input, representing the intended
MRI scanning trajectory and the points that will be sampled.

= The input to 514.pomriq consists of one file containing the number of
K-space values, the number of X-space values, and then the list of K-
space coordinates, X-space coordinates, and Phi-field complex values
for the K-space samples.

Hot loop Is vectorized

Intel Advisor summary view

Vectorization Advisor

Vectorization Advisor is a vectorization analysis tool that lets you identify loops that will benefit most from vectorization.

@ Program metrics
Elapsed Time: 36.93s

Vector Instruction Set: AVX512 Number of CPU Threads: 136
Total GFLOP Count: 19293.90 Total GFLOPS: 522.51
.

@ Loop metric 1 vectorized loop that we
Total CPU time 4267.08 () 100.0% . .
Timein1vectorized loop ~ 4206.25 (EEEEEE 95.6% S p en d 9 8 . 8% Of our t| me IN
Time in scalar code 61.62s]

@ v ization Gain/Efficiency (Not PR
@ Top time-consuming Ioops®
Loop Self Time? Total Time? Trip Counts®
 [loop in ComputeQCPU at computeQ.c:65! 1957.548s 4206.254s 12500
O [loop in ComputeQCPU at computeQ.c:58 6.963s 4213.216s 15420 N d - f -
& [loop in outputData at file.c:70 0.040s 4.160s 2097152 ee l I l 0 re I n O l I l atl O n to
O [loop in start thread at ?] 0Os 49.660s

O [loop in [OpenMP worker at z Linux util.c:769] 0s 49,660s S e e if We Ca n get m o re
@ Refinement analysis data”

These loops were analyzed for memory access patterns and dependencies: p e rfo r m a n C e

Site Location Dependencies Strides Distribution
[loop in ComputeQCPU at computeQ.c:66] No information available 96%/0%/4% |

(3 Collection details

(¥ Platform information
CPU Name: Intel(R) Xeon Phi(TM) CPU 7250 @000000 1.40GHz
Frequency: 1.40 GHz
Logical CPU Count: 272
Operating System: Linux

What is our performance?

Relative to peak system performance

Our hot loop is below

the MCDRAM roof

Performance (GFLOPS) | r Q]
1 Bandyih: 152 e D ..ot
T .. :__________:::7_:_(3.-._____:
100017 A
T : 35 sec
------ mnd“d‘h.-m' = e e ettt - -
100 -|__MCORAN ~_

10

Potential memory
bottleneck

Get detailed Advice from inte

Intel® Advisor
code analytics

Foopn CompUEQCR at compueQ.c09 Average tip Counts. 12200 © Statistics for FLOPS And Data Transfers @

(5 42062543 Instruction MiX® @ Giga Floating-point Operations Per Second

Per-loop GFLOPS = Total FLOP / Elapsed
Vectorized (Body) Total time P ps

Memory:4 Compute:8 Other:12 Number of Vector Registers: Time. Elapsed time is the exclusive (self-
13 GFLOPS 266.242 time-based) wall time from the beginning to
AVX512F 512 1957.548s the end of loop/function execution. For
Instruction Set ~ Selftime single-threaded applications Elapsed time is
equal to Self-Time.
» Memol Al - Arithmetic Intesity - Ratio of
> complge ;g: :g; - Al 0.606 Floating-point Operations to L1 Transferred
o Other 51%(12) (D Mask Bytes
i il T
Instruction Mix Summ: ary® asi 100 Ratio of Utilized Vector Elements to Total

POSSibIe inefﬁCient WZ::;: Vector Elements

4194.304 Giga Floating-point Operations
FLOP Per

Trai tS‘ m e m O y a C C e S S Iteration 160 Floating-point Operations Per Loop lteration

Gathers §JFMA, Mask Manipulations

Data transfers between CPU and memory sub-system (total traffic,
including L1, L2, LLC and DRAM traffic)

Issue: Possible inefficient memory access patterns present

.
Inefficient memory access patterns may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating. G a t h e r St rl d e a Cce SS !
() Recommendation: Confirm inefficient memory access patterns Confidence: ® Need More Data
There is no confirmation inefficient memory access patterns are present. To confirm: Run a Memory Access Patterns analysis.
e————————

ecommendations — need more
information, confirm inefficient

memory access
0]

Irregular access patterns decreases

performance!
Gather profiling

= Run Memory Access
Pattern Analysis (MAP)

B 0%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration

@ Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration

50%: percentage of memory instructions with fixed or constant non-unit
stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes
by N elements from iteration to iteration

Example: for the double floating point type, stride 4 means the memory

address accessed by this instruction increased by 32 bytes, (4*sizeof(double))

with each iteration

@E 50%: percentage of memory instructions with irregular (variable or random)

stride accesses
Irregular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index(i]]
& - gather (irregular) accesses, detected for v(p)gather® instructions on AVX2
Instruction Set Architecture

Irregular access patterns

Bad for vectorization performance

Hint: use the Intel Advisor details!

B
Operand Size (bits): 32
Operand Type: bit*16;float32*16
Vector Length: 16
Memory access footprint: 3MB

v Gather/scatter details Specific recommendation for your
Pattern: "Constant (non-unit)” app|ical‘i0n

Instruction accesses values with constant offset from
the base:

- stride within instruction = X

- stride between iterations = X*vector length

Horizontal stride (bytes): 16 Issue: Inefficient gather/scatter instructions present
Vertlcal Stflde (bytes): 256 The compiler assumes indirect or irregular stride access to data used for vector operations. Improve memory access by alerting the compiler to detected regular stride access patterns, such as:
Pattern Description
. Invariant The instruction accesses values in the same memory throughout the loop.
MBSk Is conSta nt Uniform (Horizontal Invariant) | The instruction accesses values in the same memory within the vector iteration.
Vertical Invariant The instruction accesses the memory locations using the same offset across all vector iterations.
Mask: [1111111111111111] i : - oY - h —
Unit The instruction accesses values in contiguous memory throughout the loop, and the stride between vector iterations = vector length.

Active elements in the mask: 100.0%

() Recommendation: Refactor code with detected regular stride access patterns Confidence: @ Low

The Memory Access Patterns Report shows the following regular stride access(es):

¥ Variable references
Names: block 0x7f0045867010 allocated at main.c:99

Remove gather instructions

step #1 — use newer version of the intel compiler can recognize the
access pattern

athers replacement is performed by the
“Gather to Shuffle/Permutes” compiler

transformation

Loop in ComputeQCPU at computeQ.c:65 Average Trip Counts: 12500
(5 i mizati Giga Floating-point Operations Per Second Per-loop GFLOPS
Vectorized (Body) 22?,2‘ 097s Code OptlleathnS @ =Total FLOP / Elapsed Time. Elapsed time is the exclusive
v Compiler: Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, GFLOPS 342.671 (self-time-based) wall time from the beginning to the end of

loop/function execution. For single-threaded applications
Elapsed time is equal to Self-Time.

Al - Arithmetic Intesity - Ratio of Floating-point Operations to

AVX512F_512 1444.120s

Instruction Set ~ Selftime Compiler estimated gain: 18.44x

Al L1 Transferred Bytes
Code Optimizations Applied By Compiler During Vectorization: Mask Utilization Ratio of Utilized Vector Elements to Total Vector Elements
e | * CostModel Was Ignored GFLOP Giga Floating-point Operations
Traits ® ;
* Dependency Analysis Was Ignored FLOP Per Floating-point Operations Per Loop lteration
* SIMD Iteration
2-Source Permutes
Blends™ Data transfers between CPU a ub-system (total traffic, including L1, L2, LLC and
enas DRAM traffic)
FMA
in Giga Bytes
in Giga Bytes Per
Second
in Bytes Per Loop
heration

Removed gathers Increased GFLOPS

(from 266.42 to 342.67)

Remove gather instructions

step #1 — newer version of the intel compiler can recognize the access
pattern

Performance (GFLOPS) k@) «

2890.75 | ; ganduidh 12674 GBS L oo e

,,,,,,

——

——————

MCDRAM Bandwidh: 448.74 GB/sec

GFLOPS

DRAM Bandwidt: 83.53 GBisec

I
222 - 0.15

Remove gather instructions

step #2 - Use structure of arrays instead of array of structures
-

struct kValues {
float Kx;

float Ky;

float Kz;

float PhiMag;

I

SDLT_PRIMITIVE(kValues, Kx, Ky, Kz, PhiMag)

This is a classic vectorization
efficiency strategy

_ _ But it can yield poorly
sdlt::soa1d_cqntamer<kVaIues> |n|?utKVaIues(numK); :
auto kValues = inputkValues.access(); d esi g ne d cO d e

for (k = 0; k < numK; k++) {
kValues [k].Kx() = kx[k];
kValues [k].Ky() = ky[K];

kValues [k].Kz() = kz[k];

kValues [K].PhiMag() = phiMag[K]; | nte | ® S| MD Data Layout
Templates makes this

auto kVals = inputKValues.const_access(); . .

#pragma omp simd private(expArg, cosArg, sinArg) reduction(+:QrSum, Qi t ra n Sfo r m a 'l-l O n e a Sy a n d p a | n I e SS |

for (indexK = 0; indexK < numK; indexK++) {
expArg = PIx2 * (kVals[indexK].Kx() * x[indexX] +

}

kVals[indexK].Ky() * y[indexX] +
kVals[indexK].Kz() * z[indexX]);

cosArg = cosf(expArg);
sinArg = sinf(expArg);

float phi = kVals[indexK].PhiMag();
QrSum += phi * cosArg;
QiSum += phi * sinArg;

Remove gather instructions

step #2 - Transform code using the Intel® SIMD Data Layout Templates

The loop is no longer red. This
means it takes less time now

Performance (GFLOPS)

1000

100

Has more GFLOPS, putting it
close to the L2 roof

10 -

The total performance improvement is almost 3x

for the kernel and 50% for the entire application.

Transform code using the Intel® SIMD

Data Layout Templates
S URRA S 517 YR BRERization, the dot is no longer red. This means it

takes less time now
= Has more GFLOPS, putting it close to the L2 roof

= The loop now has unit stride access and, as a result, no special
memory manipulations

= The total performance improvement is almost 3x for the kernel and
90% for the entire application.

New!

Intel Advisor 2018 beta

Intel® Advisor — Vectorization Optimization
= Roofline analysis helps you optimize effectively

= Find high impact, but under optimized loops MRS Eem— | X
= Does it need cache or vectorization optimization?

= |s a more numerically intensive algorithm a better choice?

Faster data collection ; o
= Filter by module - Calculate only what is needed. o
= Track refinement analysis — Stop when every site has executed™

Make better decisions with more data, more recommendations
= Intel MKL friendly — Is the code optimized? |s the best variant used?
= Function call counts in addition to trip counts
= Top 5 recommendations added to summary
= Dynamic instruction mix — Expert feature shows exact count of each instruction

Easier MPI launching
= MPI support in the command line dialog

summary

Call to Action

= Modernize your Code

= To get the most out of your hardware, you need to modernize your code
with vectorization and threading.

= Taking a methodical approach such as the one outlined in this
presentation, and taking advantage of the powerful tools in Intel® Parallel
Studio XE, can make the modernization task dramatically easier.

= Download the latest here: https://software.intel.com/en-us/intel-
parallel-studio-xe

= The Professional and Cluster Edition both include Advisor

= Join the 2018 beta of Intel Parallel Studio XE to get the latest version

= Send e-mail to vector_advisor@intel.com to get the latest information on
some exciting new capabilities that are currently under development.

Q7

Resources

0 Intel® Advisor Links

Vectorization Guide
= http://bit.ly/autovectorize-guide

= Explicit Vector Programming in
Fortran

= Optimization Reports

= Beta Registration & Download

Code Modernization Links

Modern Code Developer
Community
= software.intel.com/modern-code

Intel Code Modernization
Enablement Program

= goftware.intel.com/code-modernization-
enablement

Intel Parallel Computing Centers
= software.intel.com/ipcc
Technical Webinar Series
Registration
= http://bit.ly/spring16-tech-webinars

Intel Parallel Universe Magazine

= software.intel.com/intel-parallel-universe-
magazine

Notice (O

Additional Resources

For Intel® Xeon Phi™ coprocessors, but also applicable:

Intel® Parallel Studio XE Composer Edition User and Reference
Guides:

Compiler User Forums

Configurations for 2007-2016

< Vectorized
Benchn I—
8
s § The Difference Is
2@ Growing With
s X Each New
woo & J;;"o Generation of
g T Hardware
o
50,000 £
s -
. Vectorized
. y./
. <«— Serial
Intels Xeon™ 2007 2009 2010 2012 2013 2014 2016
Processor: X5472 X5570 X5680 E5-2600 E5-2600 v2 E5-2600 v3 E5-2600 v4
codenamed: Harpertown Nehalem Westmere Sandy Bridge Ivy Bridge Haswell Broadwell
Platform Hardware and Software Configuration
Unscaled H/W
Core Cores/ Num L1 Data Memory Memory Prefetchers HT Turbo o/s
Platform Frequency Socket Sockets Cache L2 Cachel3 Cache Memory Frequency Access Enabled Enabled Enabled CStates Name
Intel® Xeon™ . Fedora
3.0 GHz 4 2 32K 6MB None 32GB 800 MHz UMA Y N N Disabled
5472 Processor 20
® ™
Intel® Xeon™ X570, g gz 4 2 32K 256K 8MB 48GB 1333MHz NUMA Y v Y Disabled €901
Processor
® ™
Intel® Xeon™ X5680 3 33614z 6 2 32K 256K 12MB 48 MB 1333MHz NUMA Y v Y Disabled "€9or
Processor 20
® ™
Intel®Xeon™ £S5, g Gz 8 2 32K 256K 20MB 64GB 1600 MHz NUMA Y v Y Disabled €901
2690 Processor 20
® ™
Intel® Xeon™ E5 564z 12 2 32K 256K 30MB 64GB 1867 MHz NUMA Y v Y Disabled RHEL7.1
2697v2 Processor
® ™
Intel®Xeon™ ES 5 Ghz 18 2 32K 256K 46MB 128GB 2133 MHz NUMA Y v Y Disabled "€9or
2600v3 Processor 20
® ™
Intel®Xeon™ €S~ 36, 18 2 32K 256K 46 MB 256GB 2400 MHz NUMA Y v Y Disabled RHEL 7.0
2600v4 Processor
® ™
Intel®Xeon™ES 556 22 2 32K 256K 56MB 128GB 2133 MHz NUMA Y v Y Disabled SMOS

2600v4 Processor

Operating
System

3.11.10-301.fc20
3.11.10-301.fc20
3.11.10-301.fc20

3.11.10-301.fc20
3.10.0-229.el7.x8
6_64
3.13.5-202.fc20
3.10.0-123.
el7.x86_64

3.10.0-327.
el7.x86_64

Compiler
Version
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1
icc version
14.0.1

LIBOR

o 90x
=

?
28x
— =

Monte Carlo Asian Options

A
90x

v

Monte Carlo America Options
/sox

Key:

Vectorized
& Threaded

Vectorized

Serial

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice

J
BRI | vision #20110804

- Performance measured in Intel Labs by Intel employees.

Legal Disclaimer & Optimization Notice

. INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

= Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo
are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

